
1 

 

Surface-wave tomography for mineral exploration: a successful 

combination of passive and active data (Siilinjärvi phosphorus mine, 

Finland) 

Chiara Colombero1, Myrto Papadopoulou1, Tuomas Kauti2, Pietari Skyttä2, Emilia Koivisto3, Mikko 

Savolainen4 and Laura Valentina Socco1 5 

1Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Torino, 10129, Italy 
2Department of Geography and Geology, FI-20014 University of Turku, Finland 
3Department of Geosciences and Geography, University of Helsinki, Helsinki, FI-00014, Finland 
4Yara Suomi Oy, Siilinjärvi, Finland 

Correspondence to: Chiara Colombero (chiara.colombero@polito.it) 10 

Abstract. Surface wave (SW) methods are ideal candidates for an effective and sustainable development of seismic 

exploration, but still remain under-exploited in hard rock sites. We present a successful application of active and passive 

surface wave tomography for the characterization of the southern continuation of the Siilinjärvi phosphate deposit (Finland). 

A semi-automatic workflow for the extraction of the path-average dispersion curves (DCs) from ambient seismic noise data is 

proposed, including identification of time windows with strong coherent SW signal, azimuth analysis and two-station method 15 

for DC picking. DCs retrieved from passive data are compared with active SW tomography results recently obtained at the 

site. Passive data are found to carry information at longer wavelengths, thus extending the investigation depth. Active and 

passive DCs are consequently inverted together to retrieve a deep pseudo-3D shear-wave velocity model for the site, with 

improved resolution. The seismic results are compared with the latest available geological models to both validate the proposed 

workflow and improve the interpretation of the geometry, extent and contacts of the mineralization. Important large-scale 20 

geological boundaries and structural discontinuities are recognized from the results, demonstrating the effectiveness and 

advantages of the methods for mineral exploration perspectives.   

1 Introduction 

Challenges in mineral exploration are growing since current targets are typically located at increasing depths (Decrée and 

Robb, 2019) and within the proximity of existing mine infrastructures, where noise, accessibility and environmental impact 25 

issues exist. To be successful, modern mineral exploration methods should progress technologically to ensure improved 

efficiency, economic viability and environmental sustainability. In this framework, high resolution seismic velocity models 

can assist the construction of high quality, reliable geological models comprising information about the composition and 

structural geometry of the bedrock, which are both crucial for successful exploration. However, mineral exploration sites are 

typically characterized by intricate hard rock geology, inherently related to complex wave propagation and challenging seismic 30 
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prospection (Eaton et al., 2003), both exploiting body waves (BWs) and surface waves (SWs). The sensitivity of SWs to near-

surface properties and lateral variations, their high energy in seismic recordings and lower attenuation with respect to BWs, as 

well as the high velocity field expected at hard rock sites make them ideal candidates for high-resolution deep mineral 

exploration. In both active and passive SW tomography (SWT), dispersion curves (DCs) can be retrieved between pairs of 

receivers and then inverted in a tomographic approach to estimate 2D/3D (depending on the receiver geometry) shear-wave 35 

velocity distributions at several grid points (Kennett and Yoshizawa, 2002). Depending on the spatial and wavelength coverage 

and the superposition between different receiver-pair paths, high resolution can be achieved (Yin et al., 2016). SWT is even 

more attractive with the use of passive data, since ambient seismic noise is typically dominated by these waves. The SW signal 

contained in ambient noise is usually of lower frequency (i.e. longer wavelength), with respect to the one produced by the 

active-seismic sources of exploration, potentially meaning higher investigation depths.  40 

However, the use of SWs remains under-exploited in hard rock sites, while in other fields of applications, such as global 

seismology, passive SWT, exploiting ambient seismic noise or earthquakes, is widely used to map the laterally varying 

structure of the Earth’s crust and mantle (e.g. Ritzwoller and Levshin, 1998; Kennett and Yoshizawa, 2002; Shapiro et al., 

2005; Sabra et al., 2005).  

Compared to active SWT, the extraction of high-quality DCs from passive-source data is not straightforward. Indeed, the 45 

direction of propagation of SW with respect to the receivers’ location is unknown and likely variable over time. To ensure that 

useful SW information is contained in the data, the field measurements are usually performed over long time periods, leading 

to large datasets which are difficult to process, especially when the processing scheme is not automated. Finally, ambient noise 

usually lacks high-frequency SW information, impeding the retrieval of accurate velocity estimates at shallow depths.  

In the field of natural-resource exploration, SWT is consequently mainly used for the characterization of deep geothermal 50 

reservoirs (e.g. Lehujeur et al., 2017; Martins et al., 2020; Planès et al., 2020). Promising examples, though, have shown its 

potential to be used as a low-cost and environmentally friendly investigation method, also in hydrocarbon (e.g. Bussat and 

Kugler, 2009) and mineral (Hollis et al., 2018; Lynch et al., 2019; Da Col et al., 2020) exploration. 

Here, we present a successful integration of active and passive SWT for the characterization of the southern tail of the 

Siilinjärvi phosphate deposit (Laukansalo, Siilinjärvi, Finland) where a new open pit mine is planned to be opened in 15 years. 55 

Data acquisition, processing and methodological implementation were carried out within H2020 Smart Exploration project 

(grant agreement no. 775971), to envisage innovative and environmentally friendly methods for the sustainable exploration of 

mineral resources. We designed and tested a semi-automatic workflow for the extraction of coherent SW signal from ambient 

seismic noise recordings, azimuth analysis and picking of DCs for the tomographic inversion. Active SWT results from the 

same area of investigation, down to a depth of approximately 210 m, display a low-velocity area compatible with the presence 60 

of the carbonatite complex and high-velocity anomalies matching the position of known diabase dykes (Da Col et al., 2020). 

In this work, we exploit the lower frequencies contained within the passive data to improve the azimuthal coverage and 

investigation depth. Active and passive DCs are then inverted together to retrieve a high-resolution shear-wave velocity (VS) 

model down to a depth of 480 m. We finally compare the results with the overall structural framework of the site, the latest 
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geological models of the owning company (Yara) and the available diamond drill holes (DDH), typically extending to the 65 

depth of 200 m below the ground level. The results of this investigation comprise: i) improved understanding of the structural 

patterns of the site, including the contacts of the mineralization, ii) validation of surface wave tomography (SWT) as a reliable, 

effective and sustainable tool for mineral exploration, and iii) guidelines for future mine planning at the site.   

2 Test site and passive seismic data set 

Siilinjärvi phosphorus mine, located in the municipality of Siilinjärvi, 20 km north of the city of Kuopio (Finland, Fig. 1a), is 70 

the only operating mine producing phosphorus within the EU. The phosphorus-bearing mineral is apatite, currently extracted 

from two open pits exploiting one of the oldest carbonatites on Earth (2.61 Ga; e.g. Tichomirowa et al., 2006; O’Brien et al., 

2015). The ore occurs as a sub-vertically dipping, N-S trending sheeted body measuring approximately 1 km in width and 15 

km in length (Fig. 1b), continuing south of the current exploitation area (Fig. 1c). The ore body is known to extend down to 

800 m depth (Malehmir et al., 2017).  75 

The Siilinjärvi deposit is comprised of carbonatite-glimmerite rocks intruded into Archaean granitic and gneissic host rocks. 

Alkali metasomatised fenite halo encircles the carbonatite-glimmerite ore zone. Evenly spaced, predominantly NW-SE to N-

S striking diabase (i.e. waste rock) dykes crosscut the entire ore body. The thickness of the dykes varies within a range of a 

few centimetres to several tens of meters (Puustinen, 1971), and most of the known dykes show steep dips, but a significant 

group of moderately to gently dipping dykes is also known to exist (Mattsson et al., 2019). The dykes intersect each another 80 

creating a complex structural pattern, which is later disrupted by N-S trending shearing along the ore boundaries and by 

Proterozoic (1.89 Ga) dioritic-tonalitic intrusion in the SW border of the deposit (e.g. Lukkarinen, 2008; Fig. 1b). For future 

mine planning, beside the more complete characterization of the intricate geo-structural setting, further identification and 

location of sub-horizontally oriented diabase dykes at depth would be crucial. As their locations and extent can`t be reliably 

predicted based on surface and borehole geological observations, geophysical methods are needed to aid the mapping.  85 

Active and passive seismic data were acquired at Siilinjärvi phosphorus mine in 2018, with a 3D array of randomly-distributed 

stations (Fig. 1c). The seismic array consisted of 578 vertical geophones (10 Hz) connected to wireless stations, and almost 

continuously recorded for 13 days (September 24 - October 6). Passive data from all stations were recorded at 500 Hz and 

stored in 1-minute segy files. The deployment design was chosen to respect site and instrumentation logistical constraints and 

to optimize subsurface illumination (in terms of wavelength and azimuth coverage) in the areas of interest (Da Col et al., 2020). 90 

Beside the seismic reflection lines (SM1 to SM3 in Fig. 1b), remaining seismic stations were deployed in three main areas, 

including the main pit to the north, the gypsum pile located SW, and the southern forest area (Fig. 1c). The latter (Laukansalo, 

Siilinjärvi) is of crucial importance for future mining activities, since it is known that the mineralization extends to the south 

from the current main pit. In this area, the 3D random array included 273 stations (in red in Fig. 1c and Fig. 1d) covering 

approximately 0.8 km2, with an average distance of 50 m between the stations. Passive data recorded in this area were processed 95 
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to increase depth and resolution of the shear-wave velocity model retrieved for the southern continuation of the mineralization 

by active SWT (Da Col et al., 2020).  

3 Passive seismic tomography workflow 

The processing workflow adopted for passive SWT is summarized in Fig. 2. Before the tomographic inversion, a two-step 

semi-automatic workflow was designed to extract the path-average DCs from the passive data.  100 

In the pre-processing step (I in Fig. 2), each 1-minute segy file is windowed in 2-s segments. On each window, the Frequency 

Domain Beam Forming (FDBF) method (Zywicki, 1999) is applied to retrieve frequency-wavenumber (f – kx, ky) power 

spectral density functions, used to identify dispersive events in the recordings and their direction of propagation. The result is 

a 3D matrix having kx-ky spectra as planes at the different investigated frequencies (3-20 Hz). This frequency band was chosen 

to lower the frequency content retrieved from active DCs, generally in the range 7-48 Hz (Da Col et al., 2020). The position 105 

of the spectral maximum in each kx-ky plane provides wavenumbers and azimuth of the dominant SWs propagating at that 

frequency during the 2-s window. Once the wavenumber modulus |k| is retrieved from kx and ky values, the phase-velocity 

(VR) of the DC is computed following: 

VR =
2πf

|k|
 (1), 

where |k|, is simply: 110 

|k| = √kx
2 + ky

2 (2). 

Further pre-processing steps are summarized in Fig. 3. The DC retrieved from the FDBF method is compared with a reference 

dispersion region (Fig. 3a), defined on the basis of the velocity ranges of active dispersion curves at the lowest frequencies. If 

a significant number of DC points are located within the dispersion region (>70%), data quality is considered sufficient to 

continue the computations, otherwise, the time window is rejected. For the high-quality time windows, the maxima of the kx-115 

ky planes are automatically picked (Fig. 3b). For an automatic random selection of peaks, the azimuth is computed based on 

its location in the related kx-ky plane (Fig. 3d to 3i). If there is a dominant azimuth, i.e. consistent among the different 

frequencies (Fig. 3c), the SW event is considered coherent and the time window is stored in a folder associated to that azimuth 

value. This pre-processing procedure is automatically repeated for all the available records. Fig. 4 shows the number of 2-s 

time windows containing strong and coherent SW signal, and the related azimuth distribution, retrieved from the pre-120 

processing analyses. Approximately 7.6% of the recorded 2-s windows showed strong SW signal (Fig. 4a). To be consistent 

with the kx-ky plane orientation, the azimuth distribution is shown in the reference system of Fig. 1d. Nearly 8000 SW events 

originated at an azimuth around 219°. More in general, a first cluster of events is located between 200° and 240°, probably 

related to the workshop activities located towards W-SW, where industrial machineries are produced and tested (Fig. 1c). A 
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second cluster of events is centred around 50°, likely related to the factory area located to the NE of the forest, where apatite 125 

concentrate is processed on site to produce phosphoric acid and fertilizers (Fig. 1c). 

In the second processing step (II in Fig. 2), for each azimuth (Fig. 4b), receiver pairs aligned along this direction, with a 

tolerance of 1°, are chosen randomly to maximize path length and consequently wavelength distribution (Da Col et al., 2020). 

A modified version of the two-station method (as implemented by Yao et al., 2006) is applied to each receiver pair (e.g. Fig. 

5a). The receiver traces are cross-correlated frequency by frequency to extract cross-multiplication matrices. This procedure 130 

is repeated for the same receiver pair in all the available time windows having the same dominant azimuth. Individual cross-

multiplication matrices are then stacked to increase the signal-to-noise ratio. DCs are automatically extracted as the amplitude 

maxima of the stacked cross-multiplication matrices (Fig. 5b), using the reference dispersion region of active data (Da Col et 

al., 2020) to guide the picking at the highest frequencies (>10 Hz).  

The comparisons between active and passive DCs for the same receiver pairs (e.g. Fig. 5c) showed matching phase-velocity 135 

trend and values in the overlapping frequency/wavelength range. The global passive DC dataset (1025 curves) retrieved from 

the picking of the stacked cross-multiplication matrices is shown in Fig. 6 in comparison with the active DCs (433 curves; Da 

Col et al., 2020). The curves from passive data are generally characterized by longer wavelengths (Fig. 6b), thus enlarging the 

depth of investigation. The maximum wavelength of the passive DCs (approximately 1200 m) is nearly double the one of the 

active curves, even though the frequency content in the passive DCs was not significantly lower than the frequencies of the 140 

active curves (Fig. 6a). Thanks to the high seismic velocities characterizing the site, even the few additional lower frequency 

components present in some of the passive curves resulted in significantly large wavelength increases. The two DC data set 

were therefore merged to improve the invesion results.  

The distribution of the path length and azimuths of all the DCs is shown in Fig. 7. Although we observed peaks in the estimated 

azimuths around 200°-240° and 42°-60° (Fig. 4b) for the passive data, this did not translate to corresponding peaks in the 145 

global DC azimuth coverage. Instead, the distribution of DC azimuths is rather homogeneous, apart from a peak in the 150° 

and 330° direction. This was due to the fact that the cross-correlation matrices, computed for the same receiver pair and 

different time windows, were stacked, and only one DC was extracted for each receiver pair. Moreover, due to the random 

geometry of the receivers, several receiver pairs with different path lengths existed at the same azimuth (Fig. 7a) and, therefore, 

a wide range of path lengths was included in the DC set.  150 

The spatial coverage obtained by adding the passive DCs to the active dataset is shown for different depth ranges (assuming a 

pseudodepth of investigation = half wavelength). DC coverage is dense in the whole forest area and wavelengths and apparent 

phase velocities show consistent lateral variability at each wavelength. In the active data only, coverage was lower and limited 

to a depth of approximately 210 m (Da Col et al., 2020), while acceptable coverage is now retrieved until a depth of 

approximately 400-500 m. 155 

For the tomographic inversion of the merged data set (III in Fig. 2), the same approach applied to active DCs was followed to 

retrieve a pseudo three-dimensional shear-wave velocity (VS) model, as described in Boiero (2009). 1D profiles beneath grid 

points are estimated using damped weighted least square inversion. Horizontal and vertical constraints between neighbouring 
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models are set in the regularization matrix to connect VS and thickness information from one model to the surrounding ones. 

For the spatial discretization, we assumed 420 uniformly distributed grid points, at 44 m from each other. After testing different 160 

vertical-discretization dimensions, we concluded that the best DC fitting was achieved assuming 7 layers, reaching a maximum 

depth of 480 m. The adopted initial model is reported in Table 1. A lateral VS constraint of 150 m/s for the first four layers and 

of 500 m/s for layers 5-7 was imposed. These were found to be the strongest constraints which did not increase the inversion 

misfit. 

4 Results  165 

The final VS model, obtained after 12 iterations, is shown in Fig. 9 as slices at different depths. In the shallow subsurface (30 

m, Fig. 9a), low velocity values (2000-2800 m/s) are almost homogeneously displayed. Deeper, down to 240 m, the model 

presents a clear mapping of the low-velocity values, which have been previously attributed to the presence of the carbonatites 

(Da Col et al., 2020). In the same slices, the results highlight several local high-velocity anomalies, which have been earlier 

interpreted, depending on their location, as the intrusions of diabase dykes within the Siilinjärvi deposit or as the host rock 170 

(Fig. 9b to d). The layers between 330 m and 480 m (Fig. 9e to g) present a greater extent of high velocity zones (3300-4000 

m/s) and lower lateral variability.  

The histogram of Fig. 10a shows the misfit between the experimental and theoretical (computed for the inverted model) DC 

points. The Normalized Root Mean Square Deviation of the DCs along the analyzed two-station paths is shown in Fig. 10b. 

The misfit is lower than 12.5% for more than 75 % of the data points, and there are no zones over the investigated area with 175 

concentration of high misfits. 

To evaluate the resolution of the final model, a checkerboard test was performed. The initial model velocities (Table 1) were 

perturbed positively and negatively (±8%) according to the regular pattern of Fig. 11a (squares of 200x200 m). The VS 

perturbations obtained after the inversion are presented in Fig. 11b. Velocity perturbations at depths 30-330 m are well 

reconstructed, apart from the south-western portion of the slice at 90-m depth (red box in Fig. 11). At depths 330-480 m, the 180 

quality of the inverted checkerboard model reduces, especially at 330 m depth, where the perturbations in the southern portion 

of the model appear smoothened (blue box in Fig. 11). Nevertheless, the dimensions of the rest of the perturbation blocks in 

all the other layers are clearly identified in the inverted checkerboard model. Therefore, it can be concluded that the resolution 

of the experimentally retrieved VS model of Fig. 9 equals, at least, the size of the perturbation blocks of Fig. 11, except for the 

two zones indicated by the coloured boxes. 185 

5 Discussion 

The combined use of active and passive data led to the reconstruction of a deeper VS model for the area south of the current 

Siilinjärvi phosphorus mine where a new open pit is planned. Compared to active SWT only, the final model (Fig. 9) 
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highlighted more continuous features which geological interpretation may offer a valuable support for the characterization of 

the mineralization and future mining plans.  190 

The carbonatite-glimmerite bodies show generally low-velocity signatures as already found in Da Col et al. (2020), but the 

final velocity distribution now better highlights the general NNE-SSW orientation of the mineralization down to the 240-m 

depth (Fig. 12b to Fi. 12d). Also the fenite bodies are found to be associated with low-velocity signatures, while surrounding 

granite and gneiss show the highest VS values at shallow depths (<240 m). No sharp velocity contacts are depicted at the 

boundaries of the mineralization, but relatively clear arrays of NNE-SSW discontinuities coincide with diabase dykes and 195 

shear zones as modelled by Yara (Fig. 12a) and can be used to delineate the margins of the mineralization (I in Fig. 12c). In 

particular, the western contact is visible at all depths, and it is more distinct than the eastern margin. The contrasting character 

of the margins is in line with the observations on DDH data, where the eastern contact is found to be gradational and defined 

by alternating layers of carbonatite-glimmerite, fenite and tonalite. In the eastern area of investigation, the NNE-SSW 

discontinuities and transitions in the seismic velocity signatures can be used to improve the delineation of the contacts between 200 

fenite and granite-gneiss (IV). Some structural embayments along the fenite-granite gneiss contact are possible, as highlighted 

by the different dash pattern along line IV at the depth of 150 m (Fig. 12c), and such geometry is compatible with the overall 

irregular thickness of the fenite within the ground surface level geological maps (Fig. 1b). A sharp increase in velocity is seen 

from the depth of 240 m downwards, but with no direct linkage to known geological features. The increasing velocities are 

likely consistent with a reduction in weathering from the shallow subsurface downwards. However, this also matches the fabric 205 

of stronger reflectivity segments on the 2D reflection seismic profiles (SM1 and SM2 in Fig. 1c), possibly originating from 

contacts to diabase dykes.  

In the model slices 90-240 m, discontinuous higher-velocity areas within the mineralization, and to a lesser degree in fenite, 

loosely define a structural network that we infer to represent diabase dykes (II, III, V and VI).  In particular, feature II does 

not directly correlate with any known diabase dyke set, but could result from the interplay of different dyke sets, comprising 210 

also the strictly horizontal dykes presently included in the gently ESE-dipping set (orange in Fig. 12b). Feature III may correlate 

with the sub-vertical NNW-SSE trending dyke set (magenta in Fig. 12b). The orientation of thin diabase dykes found in some 

DDH is compatible with V and VI at 240-m depth, as well as with the larger dykes bounding the mineralization.  

At deeper levels, the NNE-SSW trending western margin of the high-velocity material remains the most visible feature, in 

agreement with the regional trend and the dominant population of diabase dykes, while no internal structures can be recognized 215 

in the mineralization from the seismic results. A parallel (NNE-SSW) but less distinct seismic “low” coincides with the fenite 

bounding the mineralization to the E.  

In general, decametric geo-structural features, with a size compatible with the checkerboard perturbations of Fig. 11, are clearly 

observable in the SWT results. Smaller-scale individual dykes and other local geological features shown by DDH data and 

observations in the Siilinjärvi main pit, further in the north, are below the expected resolution.  220 
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6 Conclusion 

The application of combined active and passive SWT provided a high-resolution deep seismic velocity model for the southern 

continuation of the Siilinjärvi phosphate deposit, on which new mining activities are planned for after 2035. We proposed a 

semi-automatic workflow for the extraction of the path-average DCs from ambient noise data recorded on site in 2018. The 

pre-processing steps allow the extraction of the time windows containing sufficient SW energy, minimizing the time and 225 

computational costs of the subsequent processing steps. The distribution of azimuths provides information about the noise 

sources and allows for the application of the two-station method, which requires the receivers to be in-line with the source. 

The method is almost fully automatic, apart from a manual quality control on the picked DCs. However, due to the large size 

of the data set (almost 800 GB), the pre-processing computations required around 3 weeks, running in parallel on a 10-core 

workstation. Including only the accepted time windows, the data set was downsized to approximately 61.5 GB. The DCs 230 

obtained by the proposed workflow are comparable to the ones obtained from active data in the overlapping frequency range, 

thus supporting the reliability of the results. Moreover, it was shown that passive data contain more information about the 

deeper subsurface portions, increasing the investigation depth and therefore, opening the possibility of mapping the target at 

depth. Combined with the active DCs, they provided high resolution SWT results down to 480-m depth. The time required for 

the two-station processing, stacking and semi-automatic DC picking was approximately 1 week, while the tomographic 235 

inversion required approximately 6.5 hours on the same 10-core workstation. The final velocity model was validated through 

interpretation of the main seismic signatures in comparison with the available geo-structural data. Results confirm the southern 

extension of the carbonatite-glimmerite deposits, help in constraining the geometry of the mineralization and in unravelling 

the intricate relationships with the host rocks and the major intruding dikes. This model can be used to guide future drilling 

efforts for planning the new open pit in the area.  240 

This successful application has proven that the use of passive data within SWT is a promising, cost-effective and sustainable 

tool for mineral exploration, overcoming the need for active seismic sources.  
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FIGURES AND TABLES 315 

 

 

Figure 1: Siilinjärvi mine: (a) geographical location; (b) geological map (Yara); (c) active and passive seismic surveys acquired in 

2018; (c) zoom on the passive seismic array in the southern area, used for passive surface-wave tomography (SWT). The reference 

system for azimuth analysis is highlighted in green. Ortophotos available from QGIS plugin QuickMapServices (Kapsi – 320 
ortoilmakuva TMS). 
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Figure 2: Passive SWT workflow adopted in this study.   

 325 
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Figure 3: Example of FDBF computation on a 2-s window. (a) DC from the FDBF method compared to the reference dispersion 

region (in red, from active dispersion data, Da Col et al., 2020). (b) Spectral amplitude of the maxima in the kx-ky planes (related to 

different frequencies). Coloured circles refer to the peak whose kx-ky planes are shown in (d) to (i). (c) Histogram of the azimuth 

occurrences in the analyzed kx-ky planes. (d) to (i) kx-ky planes at different frequencies with azimuth computations (degrees 330 
counterclockwise from E, green reference system in Fig. 1d). 
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Figure 4: (a) Number of 2-s windows with strong SW content (in blue) and total number of 2-s windows recorded during each day 

of the survey (in orange). (b) Histogram of the azimuthal directions of the selected windows retrieved from the FDBF method 

(degrees counterclockwise from E, green reference system in Fig. 1d). 335 

 

 

 

Figure 5: Example of DCs obtained by the two-station method. (a) Network geometry and considered receiver pair (green triangles). 

(b) Stacked cross-multiplication matrix and picked DC (black dots). (c) Comparison between passive and active DCs for the same 340 
receiver couple. 
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Figure 6: Passive (black) and active (red) dispersion curves. (a) Frequency-phase velocity domain. (b) Wavelength-phase velocity 

domain. 

 345 

 

 

Figure 7: (a) Path length and (b) azimuth distribution of active+passive DCs.  
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Figure 8: Tomographic pseudoslices at selected half-wavelength (pseudodepth) intervals. (a) 10–50 m, (b) 50–100 m, (c) 100–150 m, 350 
(d) 150–200 m, (e) 200–250 m, (f) 250–300 m, (g) 300–350 m, (h) 350–400 m, (i) 400–500 m. 
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Figure 9: Final shear-wave velocity model obtained from active + passive SWT. Model slices at increasing depth: (a) 30 m, (b) 90 m, 

(c) 150 m, (d) 240 m, (e) 330 m, (f) 420 m, (g) 480 m.  

https://doi.org/10.5194/se-2021-121
Preprint. Discussion started: 1 October 2021
c© Author(s) 2021. CC BY 4.0 License.



18 

 

 355 

 

Figure 10: Misfit of the active+passive final inversion model. (a) Misfit (in percentage) for each experimental-calculated DC data 

point. (b) Map of the Normalized Root Mean Square Deviation of the DCs along the analyzed two-station paths.   
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Figure 11: (a) True and (b) inverted checkerboard velocity perturbation. The boxes indicate velocity perturbations which could not 360 
be accurately recovered. 
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Figure 12: Geological interpretation of the final S-wave velocity model. (a) Overview of the area of the seismic investigation and the 

geological model of the site (from Yara). (b) Lower hemisphere stereographic projection of poles to the diabase contacts available 365 
from oriented diamond drill hole data. The great circles represent mean orientations of the four recognized diabase dyke sets. (c) 

Level images of the seismic data with geological interpretation of the main lithological boundaries. miner.=carbonatite-glimmerite 

mineralization, fen=fenite, db=diabase and grgn=granite-gneiss.  
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Table 1: Discretization and properties of the initial model of the tomographic inversion.  

Layer Thickness (m) VS (m/s) Density (kg/m3) Poisson ratio (-) 

1 30 2200 2700 0.27 

2 60 2300 2700 0.27 

3 60 2400 2700 0.27 

4 60 2600 2700 0.25 

5 60 2800 2700 0.25 

6 60 3000 2700 0.25 

7 60 3200 2700 0.25 

Half-space - 3500 2700 0.25 
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